Chemical Precipitation of BaCeO3 – CeO2 Based Nano-ceramic Composite Oxide Materials and Their Physical Characterization

نویسندگان

  • A. Samson Nesaraj Department of Chemistry, Karunya University, [Karunya Institute of Technology and Sciences] Coimbatore – 641 114, Tamil Nadu, India
  • J. Jasmine Ketzial Department of Chemistry, Karunya University, [Karunya Institute of Technology and Sciences] Coimbatore – 641 114, Tamil Nadu, India
چکیده مقاله:

In order to reduce the operating temperature of solid oxide fuel cells (SOFCs), novel electrolyte materials based on CeO2 and BaCeO3 are being developed in the scientific realm. In this context, we propose a new methodology for preparing the nano-ceramic composite materials such as BaCe0.9Gd0.9O3-δ – Ce0.9Gd0.9O2-δ (BCGO–CGO) and BaCe0.8Sm0.2O3-δ – Ce0.8Sm0.2O2-δ (BCSO – CSO) as possible electrolytes for SOFC using a simple low temperature chemical precipitation method. The precursor materials used in this preparation were barium nitrate, cerium nitrate and gadolinium nitrate / samarium nitrate (as basic materials), sodium hydroxide (as a precipitator material) and poly vinyl pyrollidone (as surfactant). In a typical experiment, the aqueous solution containing Ba2+, Ce3+ and Gd3+/Sm3+ ions was mixed with the solution of alkali in a magnetic stirrer and then the required percentage of surfactant was added. The formed hydroxides of Ba, Ce and Gd/Sm were washed with water and ethyl alcohol and dried at 50–100oC for 24 hours. The dried powder was then heat treated for 2 h each at 300, 450 and 600oC respectively and then cooled down to room temperature. It was found that the orthorhombic structure could be formed after being calcined at 600oC for 2 h, and the powders were mainly composed of nano-size particles. characterization by TGA-DTA, XRD, particle size measurements & SEM are presented to evaluate the fundamental physical properties of the proposed nanocomposite materials.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

chemical precipitation of baceo3 – ceo2 based nano-ceramic composite oxide materials and their physical characterization

in order to reduce the operating temperature of solid oxide fuel cells (sofcs), novel electrolyte materials based on ceo2 and baceo3 are being developed in the scientific realm. in this context, we propose a new methodology for preparing the nano-ceramic composite materials such as bace0.9gd0.9o3-δ – ce0.9gd0.9o2-δ (bcgo–cgo) and bace0.8sm0.2o3-δ – ce0.8sm0.2o2-δ (bcso – cso) as possible elec...

متن کامل

Wet chemical synthesis and physical characterization of doped CeO2 nanoparticles

Solid electrolytes based on doped cerium oxide, Ce(M)O2-δ (M = rare-earth cations), are of considerable interest for potential use in low temperature solid oxide fuel cells (LTSOFCs) due to its higher ionic conductivity than YSZ based solid electrolyte.  In this research work, crystalline, pure Ce1-xMxO2-δ (where M = Gd or Sm, x = 0.10 or 0.20) based nanoparticles were prepared by chemical prec...

متن کامل

Chemical precipitation and characterization of multicomponent Perovskite Oxide nanoparticles – possible cathode materials for low temperature solid Oxide fuel cell

A set of multicomponent perovskite oxide nanoparticles based on La1-xSrxCo1-yFeyO3-δ(LSCF) were prepared by a simple chemical precipitation method for application in low temperature solid oxide fuel cells (LT-SOFC) as cathode materials.  The precursor materials used in this synthesis were lanthanum nitrate hexahydrate [La(NO3)<su...

متن کامل

Chemical precipitation and characterization of multicomponent Perovskite Oxide nanoparticles – possible cathode materials for low temperature solid Oxide fuel cell

A set of multicomponent perovskite oxide nanoparticles based on La1-xSrxCo1-yFeyO3-δ(LSCF) were prepared by a simple chemical precipitation method for application in low temperature solid oxide fuel cells (LT-SOFC) as cathode materials.  The precursor materials used in this synthesis were lanthanum nitrate hexahydrate [La(NO3)<su...

متن کامل

Ceramic Materials and Nano-structures for Chemical Sensing

High selectivity, enhanced sensitivity, short response time and long shelf-life are some of the key features sought in the solid-state ceramic-based chemical sensors. Since the sensing mechanism and catalytic activity are predominantly surface-dominated, benign surface features in terms of higher aspect ratio, large surface area and, open and connected porosity, are required to realize a succes...

متن کامل

chemical precipitation and characterization of multicomponent perovskite oxide nanoparticles – possible cathode materials for low temperature solid oxide fuel cell

a set of multicomponent perovskite oxide nanoparticles based on la1-xsrxco1-yfeyo3-δ(lscf) were prepared by a simple chemical precipitation method for application in low temperature solid oxide fuel cells (lt-sofc) as cathode materials.  the precursor materials used in this synthesis were lanthanum nitrate hexahydrate [la(no3)3.6h2o], strontium nitrate [sr(no3)2], cobalt nitrate hexahydrate [co...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 6  شماره 3

صفحات  179- 190

تاریخ انتشار 2010-09-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023